Crowdsourcing tool for annotated speech corpora creation

KHUSAINOV AIDAR INSTITUTE OF APPLIED SEMIOTICS KAZAN, RUSSIA

Outline

1. Introduction

2. Broadcast speech annotation

3. Correcting annotations for crowdsourced audio

«Classical» approach:

- Acoustic models => phonemes
- Pronunciation model => words
- Language model => phrase

End-to-end approaches:

- Better accuracy, require a large amount of training data
- Using data for related languages; pre-trained models

Wav2vec2:

- NLP/Computer Vision fields benefited from using self-supervised pretraining
- Allows to learn **robust** audio representations based **on unlabeled data**
- Masking fragments; model tries to distinguish the true speech representation from distractors (uniformly sampled from other masked fragments)

The main benefits:

- For low-resourced language it's much easier to find unlabeled data
- ASR system becomes more robust to background noises, dialects, speakers

Main goals:

- Collect required unlabeled and labeled Tatar speech corpora
- Try the approach with iterative self-supervised pretraining steps on audio data that is increasingly closer to the target domain

• Recordings' format: 16 kHz, 16 bps mono WAV PCM

Speakers: native speakers, Kazan dialect

• Speech type: read speech

Core part

- Manually collected separate words and phrases
- Phonetically full, max context
- 251 speaker, average duration 0:01:58
- Total duration 8:12:16

• Read part:

- Rule-based selection from text corpus
- 190 speakers, average duration 0:22:18
- Total duration 70:39:00

Spontaneous part:

- Non-overlapping dialogues
- Total duration -5:19:33

Speech corpus			
# speakers	499		
Duration	99:09:59		
Male / Female	30% / 70%		
$Spontaneous\ speech*$	5:19:33		

^{*} We're recording spontaneous speech too, but it's not annotated

Annotation

- Speaker's name
- Age
- Gender
- Native language
- Nationality
- Speech quality (expert's mark from 1 to 5)
- Dialect
- Microphone model
- Comment

Outline

1. Introduction

2. Broadcast speech annotation

3. Correcting annotations for crowdsourced audio

Main goal – tools for corpus creation.

1. Broadcast speech annotation web-tools

[self-supervised approaches]

2. Tool to check and correct annotations

- ASP.Net Core
- React.js
- DDD (Domain Driven Design):
 - Infrastructure Layer
 - Domain layer
 - Application Layer
 - Service Layer
 - Presentation Layer
 - Client Applications

2. Project description PostgreSQL

Basic functionality:

- Audio files upload;
- VAD and splitting uploaded files into fragments;
- Web-form for annotating fragment;
- Web-form for validating made annotations;
- View status of annotation of all segments;
- Downloading the annotations.

View fragments' statuses

Annotating fragments

Validating fragments

Initial data:

- From TNV Planeta broadcast company;
- Recordings from December 2019;
- AVI video with mp3 96 kB/s stereo audio signal;
- Converted to 16 bps 16 kHz WAV;
- Total duration 733 hour.

We manually selected segments for the first stage annotation:

- News programs;
- Interviews;
- Talk-shows.

In total 40 segments (23 hours 21 minutes) have been uploaded to the system.

This gave us 22 432 audio fragments with a duration less than 15 seconds.

Outline

1. Introduction

2. Broadcast speech annotation

3. Correcting annotations for crowdsourced audio

3. Telegram bot

@TatarVoiceBot

Goal – 500 hours

- 408 speakers
- 9 hours 28 minutes

Commands:

- Next new phrase to read and send as voice message;
- 2. Correct record previous phrase again;
- 3. Skip to skip current phrase;
- 4. Statistics show user's and overall statistics;
- 5. Age select age interval;
- 6. Russian/Tatar/Help.

@TatarVoiceBot

3. Process

People read phrases (12 000)

ASR recognizes text

Manual check for files with errors (4 200)

https://github.com/heartexlabs/label-studio:

- Allows to build universal platform for all Institute annotation tasks;
- Easy to configure for each task (interface, data, hotkeys, etc.);
- Local, free.

Requirements:

- Unlabeled dataset for SS steps;
- Labeled dataset for FT steps.

Labeled datasets:

- 1. «Tatar Corpus»;
- 2. «Common Voice»;
- 3. [new] TV broadcasting;
- 4. [new] TatarVoiceBot.

Unlabeled dataset:

- 1. Audiobooks (read speech, recording studio) -114 hours;
- 2. TV broadcasting recordings for 1 month (spontaneous speech, bg noises, music) 733 hours;
- 3. 2 radio stations archives (read and spontaneous, bg music) -215 hours;
- 4. 100 scientific lectures from YouTube (good SNR) 87 hours.

Preprocessing:

- 1. Audio track extraction;
- 2. Audio conversion to 16 bps 16 kHz mono format;
- 3. VAD;
- 4. Filtering short (<4.5 sec) and long (>30 sec) fragments.

Statistics of final unlabeled dataset

Subcorpus	Initial	After VAD	After filtering short and long fragments
Audiobooks	114 hours	105 hours	58 hours
	(520 fragments)	(36 712 fragments)	(17 563 fragments)
TV	733 hours	472 hours	202 hours
	(62 fragments)	(263 466 fragments)	(67 065 fragments)
Radio stations	215 hours	146 hours	29 hours
	(398 fragments)	(29 778 fragments)	(8 941 fragments)
YouTube videos	87 hours	81 hours	39 hours
	(100 fragments)	(31 437 fragments)	(12 764 fragments)
Corpus	1 150 hours	804 hours	328 hours

Thank you

Khusainov Aidar khusainov.aidar@gmail.com