Multilingual spell checker based
on morphological analyzer for

Turkic languages
N.A. Prokopyev

TurkLang 2021

1. Introduction

- Automatic spell checking task is one of the actual
problems in Natural Language Processing

- Especially: development of unified spell checker
for all Turkic languages covered on Turkic
Morpheme portal

2. Turkic Morpheme portal as a
resource for spell checker

 There is an ongoing research and development
of Turkic Morpheme portal database in form of a
unified linguistic resource for Turkic languages

- Software tools based on this database inherit
unification quality as they work on the same
basis, algorithms and data structures

3. Spell checker development
methodology

- Morphological analyzer is developed based on the portal
database which potentially supports all Turkic languages in
database provided they have linguistic data — it is the base
NLP preprocessor for spell checker

 Morphological analyzer functions as programming library in
NLP Pipeline format and as a web-service — spell checker
should have the same structure

« Morphological analyzer and portal database allows to
implement partially correct words analysis and error
correction variants generation — this should be
implemented in spell checker

4. NLP Pipeline structure

Processing

Input text result

—
—

Language

model
v

Common

Config. : .
json intermediate data | |

format —
7

5. The Turkic morphoanalysis library

- importer.py — module providing data export from
portal database to language model in .sqlite format

- analyzer.py — main module of morphoanalyzer
with analysis methods

- generator.py — module of generator for making all
possible word variants from morphoanalysis scheme

- translator.py — module that uses analyzer and
generator for making all possible word translations
of input text

6. Morphotactic rules model from
Turkic Morpheme portal

Gram. Gram. Gram.

Concept . Concept value value value

Root Root
morpheme | ... | morpheme

Morph. | Affixal Affixal Affixal
type J Lmorpheme morpheme morpheme

/. Morphoanalysis algorithm

LL-analysis of root morpheme
taking into account the morph.
type root strip at the end

Allomorph
not found or
end of word

\ 4

Aff. allomorph search taking
into account the linking chars
from morphotactic rules

A 4

Recursive search of

aff. allomorphs using . .
morphotactic rules Checking if the next word is an

analytical allomorph
corresponding to morphotactics

4

Morphoanalysis
scheme output

8. Morphoanalysis interface

TaTtapckuii v EBes kawa v Buayanusauma ~

TATAPCTAH PECMYBJ/TMKACHI =
KOHCTUTYLUWMACE

(2002 enHbiH 19 anpeneHaare 1380 HoMepnbl, 2003 eNHbIH 15 ceHTAGpeHaare
34-TP3 Homepnbl, 2004 enHbiH 12 mapTbiHaarbl 10-TP3 HoMepnbl, 2005 enHblH

14 mapTbiHgarbl 55-TP3 HoMepnbl, 2010 enHbiH, 30 MapTbiHnark: 10-TP3 nomennki 2010
enHbiH 22 HoAbpeHaare 79-TP3 Homeprbl, 2012 enHbiH PacnoaHaHo: 99% (7582 n3 7694)

22 mioHeHpare 40-TP3 Homepibl XOKYKblHA o
ANapHbIH

TaTtapcTaH Pecny6iMkachl 3aKoHHaphbl pejakumaAceHa)
THres

XOKYKNbINbITbI
AHANIAS WXTHIAD 63i : NOUN ———— ce3: ABES —— ner: NMLZ —— e:P0SS.3

GengepyHer

WpekKnenere

PacnosHaHo: 99% (7582 u3 7694)
—

NpHHUMNNapbiHa

Baiceanek : NOUN e:P0SS.3

Baices : ADJECTIVE —— ner : NMLZ

e:P0OSS.3
HUresnadsa

TapUXM

MK

Ny A
4

9. Analysis scheme examples

XOKYK I NOUN ———— bl - MUN nbir : NMLZ —— b1 : POSS.3
rad : PST_INDF
yarbin : VERB —— gbip : CAUS —— bin: CONV_ACC Hbirapbin : VERB
rad : PART_PAST
anpens : NOUN —— eH: POS5.3 —— O3 L0C —— re: ATTR_POSS
tenepaums : NOUN = ce:P0SS5.3 — 6enad : INST/COMIT 3aK0H : NOUN — 6yenya : PROS
Gawkap : VERB ——— Ma : NEG praancik : NOUN —— bIH: POSS.3 HaH : ABL

10. Spell checker algorithm

4

Transition to last nodes of analysis
scheme, finding the remaining
word part

Getting morphoanalysis
scheme from NLP Pipeline

A 4

Search for next possible allomorph
chains according to morphotactics up to
the remaining prat length

Scheme ends
with error

A 4

Sort the list of found allomorph chains
based on Levenshtein distance to the
remaining word part

b

’ Output of correct word part
/ Output None / + first N of found

allomorph chains

11. Error correction example

COI‘I‘eCt: 3aKOHHapbl 3akod : NOUN —— uHap:PL —— mi:POSS.3

Error: 3aKOMapbl 3aKoH I NOUN —— nap: ?7 bl : POSS.3

According to morphotactics after sakon root can be the next allomorphs:
-Cbl3, -HAH, -Hbl, -2a, -Uble, -UblK, -Ud, -Hbl, -HblH, -Ka, -Kall, etc. (38 variants)

Taking into account the remaining word part -1aput:

1. Longer length allomorphs are discarded;

2. Other allomorphs are connected with next morphotactics allomorphs until
remaining word length reached;

3. Obtained allomorph chains are compared with the remaining word part
by the Levenshtein distance;

Output: Correct word part + up to N closest allomorph chains.

11. Conclusion

- A task is given to develop the programming library
and web-service tools for automatic spell checking of
Turkic languages in a unified architecture

- It can be solved using the already created databases
and morphoanalysis software based on Turkic
Morpheme portal

» Quality of spell checker functioning for some
specific language is correlated to completeness of
database for this language

Thank you for attention!

UrbTHOapbIrni3 e4eH paxmarT!

Cnacu60 3a BHMMaHMe!

